Разделы



Обзор информационных технологий, предназначенных для оперативной и аналитической обработки данных

В области информационных технологий существуют два взаимно дополняющих друг друга направления:

•      технологии, ориентированные на оперативную (транзакционную) обработку данных. Эти технологии лежат в основе экономических информационных систем, предназначенных для оперативной обработки данных. Называются подобные системы - OLTP ( online transaction processing ) системы;

•       технологии, ориентированные на анализ данных и принятие решений.   Эти   технологии   лежат   в  основе   экономических информационных    систем,    предназначенных    для    анализа

накопленных данных. Называются подобные системы - OLAP

( online analytical processing ) системы .

Основное назначение OLAP -систем - динамический многомерный

анализ исторических и текущих данных, стабильных во времени, анализ

тенденций,    моделирование   и   прогнозирование    будущего.    Такие

системы, как правило, ориентированы на обработку произвольных ,

заранее   не   регламентированных   запросов.   В   качестве   основных

характеристик этих систем можно отметить следующие :

•      поддержка многомерного представления данных, равноправие всех измерений, независимость производительности от количества измерений;

•      прозрачность для пользователя структуры, способов хранения и обработки данных;

•      автоматическое отображение логической структуры данных во внешние системы;

•      динамическая обработка разряженных матриц эффективным способом.

Термин OLAP является сравнительно новым и в разных литературных источниках трактуется иногда по разному . Этот термин часто отождествляют с поддержкой принятия решений (DSS (Decision Support Systems )- системы поддержки принятия решения. А в качестве синонима для последнего термина используют Data Warehousing -хранилища (склады) данных, понимая под этим набор организационных решений, программных и аппаратных сре дств дл я обеспечения аналитиков информацией на основе данных из систем обработки транзакций нижнего уровня и других источников

“Склады данных” позволяют обрабатывать данные, накопленные за длительные периоды времени. Эти данные являются разнородными (и не обязательно структурированными). Для “складов данных” присущ многомерный характер запросов. Огромные объемы данных, сложность структуры как данных, так и запросов требует использования специальных методов доступа к информации.

В других источниках понятие Системы Поддержки Принятия Решений (СППР) считается более широким. Хранилища данных и средства оперативной аналитической обработки могут служить одними из компонентов архитектуры СППР.

п»ї

OLAP всегда включает в себя интерактивную обработку запросов и последующий многопроходный анализ информации, который позволяет выявить разнообразные, не всегда очевидные, тенденции, наблюдающиеся в предметной области.

Иногда различают " OLAP в узком смысле" - это системы которые обеспечивают только выборку данных в различных разрезах, и " OLAP в широком смысле", или просто OLAP , включающей в себя:

- поддержку нескольких пользователей, редактирующих БД.

- функции моделирования, в том числе вычислительные механизмы получения производных результатов, а также агрегирования и объединения данных;

- прогнозирование, выявление тенденций и статистический анализ.

Естественно, что каждый из этих типов ИС требует специфической организации данных, а так же специальных программных средств, обеспечивающих эффективное выполнение стоящих задач.

OLAP - средства обеспечивают проведение анализа деловой информации по множеству параметров, таких как вид товара, географическое положение покупателя, время оформления сделки и продавец, каждый из которых допускает создание иерархии представлений. Так, для времени можно пользоваться годовыми, квартальными, месячными и даже недельными и дневными промежутками; географическое разбиение может проводиться по городам, штатам, регионам, странам или, если потребуется, по целым полушариям.

OLAP - системы можно разбить на три класса.

Наиболее сложными и дорогими из них являются основанные на патентованных технологиях серверы многомерных БД. Эти системы обеспечивают полный цикл OLAP -обработки и либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для анализа данных внешние программы работы с электронными таблицами. Продукты этого класса в наибольшей степени соответствуют условиям применения в рамках крупных информационных хранилищ. Для их обслуживания требуется целый штат сотрудников, занимающихся как установкой и сопровождением системы, так и формированием представлений данных для конечных пользователей. Обычно подобные пакеты довольно дороги. В качестве примеров продуктов этого класса можно привести систему Essbase корпорации Arbor Software , Express фирмы IRI (входящей теперь в состав Oracle ), Lightship производства компании Pilot Software и др.

Биржа Forex разрешает каждому желающему зарабатывать на колебаниях валютных курсов любых мировых валют законно, в любое время дня и ночи, не выходя из квартиры и даже не имея специального образования!

Следует отметить, что одним из способов обеспечения быстрой обработки данных при их анализе является организация данных в виде многомерных БД ( MDD ). Информация в MDD хранится не в виде индексированных записей в таблицах, а в форме логически упорядоченных массивов. Единой общепризнанной многомерной модели хранения данных не существует. В MDD отсутствует стандартизованный метод доступа к данным, и они могут отвечать требованиям специфической аналитической обработки данных.

п»ї

Принимая во внимание все перечисленное, сравнение между различными MDD - продуктами можно проводить только по самым обобщенным категориям. В более дешевом секторе рынка присутствуют лишь однопользовательские и предназначенные для небольших локальных сетей средства просмотра многомерных данных. Хотя они обладают довольно высоким уровнем функциональных возможностей и удобны в использовании, эти системы ограниченны по своему масштабу. и им недостает средств, необходимых для реализации OLAP - обработки в широком смысле. В данную категорию попадают такие продукты, как PowerPlay корпорации Cognos , PaBlo фирмы Andyne и Mercury компании Business Objects . Дорогой же сектор рынка представлен системами Acumate ES фирмы Kenan Technologies , Express корпорации Oracle , Gentium компании Planning Sciences и Holos фирмы Holistic Systems . Они настолько разнятся по своим возможностям, что любую из них можно смело выделять в отдельную категорию. И наконец, MDD -системы в чистом виде: Essbase корпорации Arbor Software , LightShip Server фирмы Pilot Software и TM /1 компании Sinper [ N . Raden (Рынок программных средств)].

Второй класс OLAP -средств - реляционные OLAP -системы ( ROLAP ). Здесь для хранения данных используются старые реляционные СУБД, а между БД и клиентским интерфейсом организуется определяемый администратором системы слой метаданных. Через этот промежуточный слой клиентский компонент может взаимодействовать с реляционной БД как с многомерной. Подобно средствам первого класса, ROLAP -системы хорошо приспособлены для работы с крупными информационными хранилищами, требуют значительных затрат обслуживания специалистами информационных подразделений и предусматривают работу в многопользовательском режиме. Среди продуктов этого типа - IQ / Vision корпорации IQ Software , DSS / Server и DSS / Agent фирмы MicroStrategy и DecisionSuite компании Information Advantage .

ROLAP - средства    реализуют    функции    поддержки    принятия решений в надстройке над реляционным процессором БД.

Такие программные продукты должны отвечать ряду требований, в частности:

-     иметь мощный оптимизированный для OLAP генератор SQL -выражений, позволяющий применять многопроходные SQL -операторы SELECT и/или коррелированные подзапросы;

-     обладать достаточно развитыми средствами для проведения нетривиальной обработки, обеспечивающей ранжирование, сравнительный анализ и вычисление процентных соотношений в рамках класса;

-    генерирвать SQL -выражения, оптимизированные для целевой реляционной СУБД, включая поддержку доступных в ней расширений этого языка;

-    предоставлять механизмы описания модели данных с помощью метаданных и давать возможность использовать эти метаданные для построения запросов в реальном масштабе времени;

-    включать в себя механизм, позволяющий оценивать качество построения сводных таблиц с точки зрения скорости вычисления, желательно с накоплением статистики по их использованию.

Третий, сравнительно новый тип OLAP -средств - инструменты генерации запросов и отчетов для настольных ПК, дополненные OLAP -функциями или интегрированные с внешними средствами, выполняющими такие функции. Эти весьма развитые системы осуществляют выборку данных из исходных источников, преобразуют их и помещают в динамическую многомерную БД, функционирующую на ПК конечного пользователя. Указанный подход, позволяющий обойтись как без дорогостоящего сервера многомерной БД, так и без сложного промежуточного слоя метаданных, необходимого для ROLAP - средств, обеспечивает в то же время достаточную эффективность анализа. Эти средства для настольных ПК лучше всего подходят для работы с небольшими, просто организованными БД. Потребность в квалифицированном обслуживании для них ниже, чем для других OLAP -систем, и примерно соответствует уровню обычных сред обработки запросов. В числе основных участников этого сектора рынка -к омпания Brio Technology со своей системой Brio Query Enterprise , Business Objects с одноименным продуктом и Cognos с PowerPlay .

В   настоящее   время   увеличивается   число   Web -совместимых продуктов OLAP .

Важным является вопрос приспосабливания OLAP к остальному ПО . Хотя поставщики OLAP начинают предлагать некоторые способы взаимодействия с SQL -СУБД и другими инструментами, но однако, пользователи и аналитики предупреждают, что уровень интеграции может быть различным и, вероятно, потребует значительного объема кодирования, включая написание запросов на языке SQL . Более того, для интеграции OLAP с остальным программным обеспечением предприятия не существует промышленного стандарта.

Решение данной проблемы может состоять в следующем. Например, многие компании позиционируют базы данных с OLAP в качестве клиентских частей хранилищ данных. При таком подходе хранилища питают ядро многомерной OLAP выборками данных, к которым  в  дальнейшем  могут  получить  доступ  пользователи  для быстрого выполнения комплексных запросов. При этом целью является создание среды запросов, скрывающей от пользователя местоположение данных. В этой среде будут автоматически выполняться комплексные запросы к ядру многомерной обработки или поиск детализированной информации и простых запросов на реляционных серверах. Для компаний, которые не могут пойти этим путем, важную роль в настройке связей между инструментами OLAP и другим программным обеспечением играют фирмы-консультанты.

OLTP - системы ,      являясь      высокоэффективным      средством реализации оперативной обработки, оказались мало пригодны для задач аналитической обработки. Это вызвано следующим:

1. средствами     традиционных     OLTP -систем     можно     построить аналитический отчет и даже прогноз любой сложности, но заранее регламентированный.       Любой       шаг        в       сторону,       любое нерегламентированное   требование   конечного   пользователя,   как правило, требует знаний о структуре данных и достаточно высокой квалификации программиста;

2. многие необходимые для оперативных систем функциональные возможности являются избыточными для аналитических задач и в то же время могут не отражать предметной области. Для решения большинства аналитических задач требуется использование внешних специализированных инструментальных сре дств дл я анализа, прогнозирования и моделирования. Жесткая же структура баз не позволяет достичь приемлемой производительности в случае сложных выборок и сортировок и, следовательно, требует больших временных затрат для организации шлюзов.

3. в отличие от транзакционных, в аналитических системах не требуются и, соответственно, не предусматриваются развитые средства обеспечения целостности данных, их резервирования и восстановления. Это позволяет не только упростить сами средства реализации, но и снизить внутренние накладные расходы и, следовательно, повысить производительность при выборке данных.

Круг задач, эффективно решаемых каждой из систем, определим на основе сравнительных характеристик OLTP - и OLAP -систем (табл. 8).


Читать далее: Подходы к выбору экономических информационных систем